Wildfire problem will grow in coming decades
A Model to Measure and Project Fire Activity
“We used 34 years of climate data to calibrate area burned in 1,500 grid cells across western North America, so we could capture the different ways that seasonal climate regulates fire in different regions,” said Falk, a professor in the School of Natural Resources and the Environment in the UA College of Agriculture and Life Sciences.
The key measurement, annual area burned, is a combination of fire size, frequency and variability from year to year. Area burned does not necessarily indicate fire severity, the ecological effects in a burned area.
Taking into account geographic variation, the study data focused on fire occurrence, seasonal temperatures and snowpack. The seasonal climate variables that turned out to be driving the amount of area burned were summer temperatures during fire season, spring temperatures and rainfall, and winter temperatures. Winter and spring conditions regulate snowpack, which can delay the onset of the fire season.
The team built a statistical model for wildfire area burned in each of the grid cells studied, and then tested it with data for actual area burned since 2010 to validate their predictions. It did not project the extent of area burned beyond the mid-21st century, as climate and vegetation changes become more uncertain later in the century.
Findings for western and northern North America show that about half the states and provinces are projected to have a large increase—five or more times the current levels—in total wildfire area burned. Others may see smaller increases, indicating there is no “one-size-fits-all” model. Increases in area burned are unevenly distributed across the study area, with the strongest increases projected in the interior western region.
Heads-Up for Land Management
“Ultimately, this means that the large fire seasons of recent years, such as the one just ending, are likely to occur more frequently, affecting ecosystems, communities and public safety,” Falk said. “These will be billion-dollar fires. We’re just not ready for fire impacts of this kind, including post-fire effects from flooding after fire.”
The total cost of the 2017 fires in California alone is projected to exceed $180 billion. This includes not only the immediate costs of firefighting, but also the much larger costs of landscape rehabilitation; medical and hospital costs; insurance losses and the costs of replacing thousands of homes and other buildings; lost economic productivity from the destruction of businesses; repair and replacement of key infrastructure such as roads, power lines and dams; and weeks of lost income by employees.
Across the U.S., public land managing agencies are being stretched to their limits by the current scale of wildfire. The U.S. Forest Service spends more than half of its entire budget on wildfire response, leaving little for other key elements of its mission such as recreation, ecosystem restoration, research and public education.
Knowing about future regional variation in the projected annual area burned can help land managers and policy makers prepare for the possibility of extremely large fire years. Falk pointed out that seasonal climate changes also are having the effect of making the fire season longer, so there is additional time for more acreage to burn. In years when seasonal climate drives lengthy fire seasons, fire management resources may be stretched to the limit.
“Wildfires act as a multiplier of other forces such as climate change, exposing more and more areas not only to the immediate effects of fire, but also to the resulting cascade of ecological, hydrological, economic and social consequences,” Falk said. “We hope that this research will be a wake-up call to public agencies and legislatures at all levels of government that the fire problem is not going to get any smaller in coming decades.
“If anything, we need a serious, fact-based national dialogue about how to sustain our forests and woodlands through smart management and policy.”
Read more at: https://phys.org/news/2018-02-wildfire-problem-decades.html#jCp